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Abstract:Stress accumulation near earthquake generating fault system during the aseismic period in a 

seismically active region becomes a subject of research during the last few decades. Mathematical models have 

been formulated to study the eff ect on the nature of stress accumulation due to interactions of neighbouring 

faults. Two interacting, finite strike-slip faults, situated in a viscoelastic half-space representing the 

Lithosphere-Asthenosphere system, is considered here. The strikes of the faults are not parallel here. Stresses 

and strain accumulation in the region due to various tectonic processes, such as mantle convection and plate 

movements etc. ultimately tends to movements across the faults. In the present paper, analytical expressions for 

displacements, stresses and strain have been obtained using suitable mathematical techniques developed for this 

purpose. It is found that movement across one fault has considerable eff ects on rate of stress accumulation near 

the other. A detailed study of these expressions may give some ideas about the nature of stress-strain 

accumulation in the system, which may be useful in formulating an effective earthquake prediction programme. 

Keywords:Aseismic period, Lithosphere-Asthenosphere system, Finite fault, Stress accumulation, Viscoelastic 

half-space, Mantle convection, Earthquake prediction. 
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I. Introduction 
 Modeling of dynamical processes which leads to an earthquake is one of the main concerns in 

theoretical seismology at present. Two major seismic events are usually separated by a comparatively long 

aseismic periods of order of few decades or so. During the aseismic period slow and continuous surface 

movements are observed with the help of sophisticated measuring instruments. Such aseismic surface 

movements indicate that slow aseismic change of stress and strain are occurring in the region which may 

eventually lead to sudden or creeping movements across the seismic faults situated in the region. Modeling of 

aseismic ground deformation was carried out by a number of seismologists including Ghosh, et. al.
1
, 

Chinnery
2,3

, Karato
4
, Cohen

5
, Mukhopadhyay, et. al.

6,7
, Piombo, et.al.

8
, Mukhopadhyay, et. al.

9,10
, Rosen and 

Singh
11

, Sato
12

, Segal
13

, Sen, et. al.
14

, Ghosh and Sen
15

, Sen and Debnath
16,17

, Debnath and Sen
18,19

, Debnath
20

, 

Debnath and Sen
21

.They did a wonderful work in analyzing the displacement, stress and strain in the layered 

medium. In most of the earlier works elastic or viscoelastic layer or half-space medium were considered to 

represent the Lithosphere-Asthenosphere system. In most of the cases the faults were taken to be too long 

compared to its depth, so that the problem reduced to a 2D model. Noting that there are several faults which are 

not so long compared to their depth, a 3D model is more useful. In most of the theoretical models on finite faults 

developed so far, the strikes of the faults aretaken to be parallel. But fault system may often consist of faults of 

non-parallel strike. With these points in view, in the present paper we consider two non-parallel surface 

breaking strike-slip faults of finite length situated in a viscoelastic half-space. The medium is under the action of 

tectonic forces due to mantle convection or some related phenomena. It is assumed that the faults undergo a 

sudden movement when the stresses in the region near them exceed certain threshold values, which depend on 

the cohesive and frictional forces across the faults. 

 

II. Formulation 
We consider two rectangular strike-slip faults F1 and F2 of lengths 2L1 and 2L2 respectively in a 

viscoelastic half space of linear Maxwell type. The strike of the faults on the free surface are not parallel and 

making an angle θ. Let D1 and D2 be the width of the faults F1 and F2 respectively. 

A rectangular Cartesian coordinate system is used for the fault F1 with the mid-point O of the fault F1 

as the origin, the strike of the fault along the y1 axis , y2 axis perpendicular to the fault F1 and y3 axis pointing 

downwards so that the fault F1 is given by F1:(−L1 ≤ y1 ≤ L1, y2 = 0, 0 ≤ y3 ≤ D1). Similarly for the fault F2 we 

introduce a rectangular Cartesian coordinate system with the midpoint Oʹ of the fault F2 as the origin. We take 
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the coordinate of Oʹ as (d, D, 0) with respect to the coordinate system (y1, y2, y3). We take the strike of the fault 

along the z1 axis , z2 axis perpendicular to the fault F2 and z3 axis pointing downwards so that the fault F2 is 

given by F2: (−L2 ≤ z1 ≤ L2, z2 = 0, 0 ≤ z3 ≤ D2) as shown inFigure 1. y3 and z3 axis are parallel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 :Section of the model by the plane y1 = 0 

The relations between these two coordinate systems are given by: 

𝑧1 =  𝑦1 − 𝑑 cos 𝜃 +  𝑦2 − 𝐷 sin 𝜃, 

𝑧2 = − 𝑦1 − 𝑑 sin 𝜃 +  𝑦2 − 𝐷 cos 𝜃, 

𝑧3 = 𝑦3 

For the fault F1 let (ui), (τij) and (eij) be the components of displacements, stresses and strains [i, j = 1, 

2, 3] . 

The section of this model in the plane y1 = 0 is shown in Figure1. 

 

Stress−Strain relations (Constitutive equations):For the viscoelastic Maxwell type medium the constitutive 

equations are taken to be: 

 
1
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1
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1

𝜂
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1
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 𝜏33 =

𝜕2𝑢3
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where η is the eff ective viscosity and µ is the eff ective rigidity of the material. 

 

Stress equation of motion:The stresses satisfy the following equations (assuming quasi-static deformation for 

which the inertia terms are neglected) and body forces do not change during our investigation: 
𝜕

𝜕𝑦1
 𝜏11 +

𝜕

𝜕𝑦2
 𝜏12 +

𝜕

𝜕𝑦3
 𝜏13 = 0 

𝜕

𝜕𝑦1
 𝜏21 +

𝜕

𝜕𝑦2
 𝜏22 +

𝜕

𝜕𝑦3
 𝜏23 = 0   (2) 

𝜕

𝜕𝑦1

 𝜏31 +
𝜕

𝜕𝑦2

 𝜏32 +
𝜕

𝜕𝑦3

 𝜏33 = 0 

 

where −∞ ≤ 𝑦1 ≤ ∞, −∞ ≤ 𝑦2 ≤ ∞, 𝑦3 ≥ 0, 𝑡 ≥ 0 

 

Boundary conditions: The boundary conditions are taken as, with t = 0 representing an instant when the 

medium is in aseismic state: 

y3 

F1 

D1 

L1 

y1 

O 

y2 

z3 
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F2 
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z1 

Viscoelastic halfspace (µ,η) 
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lim𝑦1→𝐿1− 𝜏11(𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡) = lim𝑦1→𝐿1+ 𝜏11 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = 𝜏𝐿1
(𝑠𝑎𝑦) 

lim𝑦1→−𝐿1− 𝜏11 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = lim𝑦1→−𝐿1+ 𝜏11 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = 𝜏𝐿1
(𝑠𝑎𝑦) (3) 

for𝑦2 = 0,  0 ≤ 𝑦3 ≤ 𝐷1 ,  𝑡 ≥ 0 

assuming that the stresses maintaining a constant value 𝜏𝐿1
 at the tip of the fault F1 along y1 axis the value of this 

constant stress is likely to be small enough so that no further extension is possible along the y1 axis. 

 

𝜏12 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 → 𝜏∞(𝑡)(4) 

as 𝑦2 → ∞,  − ∞ < 𝑦1 < ∞,  𝑦3 ≥ 0,  𝑡 ≥ 0 

 

𝜏∞(𝑡)is the stress in the strike-slip direction for F1 maintained by the tectonic forces due to mantle convection 

and other related phenomena. It is assumed to be slowly increasing with time and is the main driving force for a 

movement across F1 in the strike-slip direction. 

   On the free surface𝑦3 = 0 (−∞ < 𝑦1 < ∞,  − ∞ < 𝑦2 < ∞ ,  𝑡 ≥ 0) 

𝜏13 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = 0 

𝜏23 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = 0 (5) 

𝜏33 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = 0 

 

Also as   𝑦3 → ∞,  − ∞ < 𝑦1 , 𝑦2 < ∞,   𝑡 ≥ 0 

𝜏13 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = 0 

𝜏23 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = 0 (6) 

𝜏33 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = 0 
 

𝜏22 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = 0          (7) 

as 𝑦2 → ∞,  − ∞ < 𝑦1 < ∞,  𝑦3 ≥ 0,  𝑡 ≥ 0 

 

Initial conditions: Let  𝑢𝑖 0,  𝜏𝑖𝑗  0
 and  𝑒𝑖𝑗  0

,   i,  j = 1,  2,  3  be the values of   𝑢𝑖 ,   𝜏𝑖𝑗    and  𝑒𝑖𝑗  at time 

t=0. 

 

III. Displacements, stresses and strains in the absence of any fault movement 
In the absence of any fault movement the displacements and stresses are continuous throughout the 

model. In order to obtain the expressions for displacement, strain and stresses we take Laplace transform of (1) 

to (7) with respect to t. The resulting boundary value problem can be solved easily. The solution obtained by 

taking inverse Laplace transforms, are given below: 

 

𝑢1 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡  =  𝑢1 0 +
𝜏𝐿1

𝜇
𝑦1𝑡 +

𝑦2

𝜇
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𝜇

𝜂
 𝜏∞ 𝜏  𝑑𝜏

𝑡

0
  

𝑢2 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = (𝑢2)0 +
𝑦1 + 𝑦2

𝜇
 𝜏∞ 𝑡 − 𝜏∞ 0 +

𝜇

𝜂
 𝜏∞ 𝜏  𝑑𝜏

𝑡

0

  

𝑢3 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = (𝑢3)0 

𝜏11 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = (𝜏11)0𝑒
−

𝜇𝑡

𝜂 +
𝜇

𝜂
𝜏𝐿1

 1 − 𝑒
−

𝜇𝑡

𝜂   

𝜏12 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = 𝜏∞ 𝑡 −  𝜏∞ 0 −  𝜏12 0 𝑒
−

𝜇𝑡

𝜂   (8) 

𝜏13 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = (𝜏13)0𝑒
−

𝜇𝑡

𝜂  

𝜏22 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = (𝜏22)0𝑒
−

𝜇𝑡

𝜂  

𝜏23 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = (𝜏23)0𝑒
−

𝜇𝑡

𝜂  

𝜏33 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = (𝜏33)0 

𝑒11 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = (𝑒11)0 +
𝜏𝐿1

𝑡

𝜇
 

𝑒12 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 =
1

2
(𝑒12)0 +

1

𝜇
 𝜏∞ 𝑡 − 𝜏∞ 0 +

𝜇

𝜂
 𝜏∞ 𝜏  𝑑𝜏

𝑡
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From the above solution we find that the stress component 𝜏12  increases with time and tends to 𝜏∞(𝑡) 

as t tends to∞, while𝜏22 , 𝜏23tends to zero, but 𝜏33remains constant value (𝜏33 )0. We assume that the rheological 
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properties of the half space near the faults are such that when the relevant stress component 𝜏12  reaches a certain 

threshold value 𝜏𝑐1
 (say) after a time T1 (say) the fault F1 slips. The magnitude of slip is expected to satisfy the 

following conditions: 

 

(C1) Its value will be maximum near the middle of the fault on the free surface.  

(C2) Its will gradually decrease to zero at the tip of the fault F1 along its length.  

(C3) The magnitude of the slip will decrease with y3 as we move downwards and ultimately tends to zero 

near the lower edge of the fault F1. 

 

If 𝑓1 𝑦1 ,  𝑦3 be the slip function, it should satisfy the above conditions. 

 

IV. Displacements, stresses and strains after the commencement of the fault movement  
We assume that after a time T1, the stress component 𝜏12  (which is the main driving force for the strike-

slip motion of the fault) exceeds the critical value 𝜏𝑐1
, the fault F1 slips and the other fault F2 remains locked. 

Then (1) – (7) are satisfied with the following condition of slip across F1 : 

 (𝑢1) 𝐹1
= 𝑈1 . 𝑓1 𝑦1 ,  𝑦3 .  𝐻(𝑡1)                  (9) 

where (𝑢1) 𝐹1
= the discontinuity of u1 across F1 = lim𝑦2→0+ 𝑢1 − lim𝑦2→0− 𝑢1  

 −𝐿1 ≤ 𝑦1 ≤ 𝐿1,  𝑦2 = 0,  0 ≤ 𝑦3 ≤ 𝐷1 ,  𝑡1 = 𝑡 − 𝑇1 ,  𝑡1 ≥ 0 

and𝐻(𝑡1) is the Heaviside step function. 

 

Taking Laplace transform of (9) we get, 

 (𝑢 1) 𝐹1
=

𝑈1

𝑝
. 𝑓1 𝑦1 ,  𝑦3 ,      (10) 

p being the Laplace transform variable. 

 

We try to find the solution as:  

𝑢𝑖 =  𝑢𝑖 1 +  𝑢𝑖 2 

𝜏𝑖𝑗 =  𝜏𝑖𝑗  1
+  𝜏𝑖𝑗  2

(11)      

𝑒𝑖𝑗 =  𝑒𝑖𝑗  1
+  𝑒𝑖𝑗  2

 

where 𝑢𝑖 1 ,  𝜏𝑖𝑗  1
,  𝑒𝑖𝑗  1

  𝑖,  𝑗 = 1,  2,  3  are continuous everywhere in the model and given by (8).  

 

For the second part we note that  𝑢2 2,  𝑢3 2 are both continuous even after the fault slip, so that 

 𝑢2 2 =  𝑢3 2 = 0 while  𝑢1 2 satisfies the dislocation condition given by (9). 

 

 𝑢1 2satisfies 3D Laplace equation as :   

𝛻2 𝑢 1 2 = 0                          (12) 

with the modified boundary condition 

𝜏 12 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 → 0(13)                     

as 𝑦2 → ∞,  − ∞ < 𝑦1 < ∞,  𝑦3 ≥ 0 

And the other boundary conditions are same as (3) – (7). 

 

We solve the above boundary value problem by modified Green’s function method following Maruyama
22, 

23
, Rybicki

24
 and the correspondence principle. 

 

    Let 𝑄 𝑦1 ,  𝑦2 ,  𝑦3  be any point in the field and P 𝑥1 ,  𝑥2 ,  𝑥3  be any point on the fault, then we have  

 𝑢 1 2 𝑄 =    𝑢 1 2 𝑃  
𝐹1

.  G 𝑃,  𝑄  𝑑𝑥3𝑑𝑥1 

 =  
𝑈1

𝑝𝐹1

. 𝑓1 𝑥1 ,  𝑥3 . G 𝑃,  𝑄  𝑑𝑥3𝑑𝑥1 

where G is the Green’s function satisfying the above boundary value problem and  

G 𝑃,  𝑄 =
𝜕

𝜕𝑥2

𝐺1 𝑃,  𝑄  

where𝐺1 𝑃,  𝑄 =
1

2𝜋
 

1

  𝑦1−𝑥1 2+ 𝑦2−𝑥2 2+ 𝑦3−𝑥3 2 
1
2

+
1

  𝑦1−𝑥1 2+ 𝑦2−𝑥2 2+ 𝑦3+𝑥3 2 
1
2
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Therefore,G 𝑃,  𝑄 =
1

2𝜋
 

 𝑦2−𝑥2 

  𝑦1−𝑥1 2+ 𝑦2−𝑥2 2+ 𝑦3−𝑥3 2 
3
2

+
 𝑦2−𝑥2 

  𝑦1−𝑥1 2+ 𝑦2−𝑥2 2+ 𝑦3+𝑥3 2 
3
2

  

 

 𝑢 1 2 𝑄 =  
𝑈1

2𝜋𝑝𝐹1

. 𝑓1 𝑥1,  𝑥3 .  
 𝑦2 − 𝑥2 

  𝑦1 − 𝑥1 
2 +  𝑦2 − 𝑥2 

2 +  𝑦3 − 𝑥3 
2 

3

2

+
 𝑦2 − 𝑥2 

  𝑦1 − 𝑥1 
2 +  𝑦2 − 𝑥2 

2 +  𝑦3 + 𝑥3 
2 

3

2

 𝑑𝑥3𝑑𝑥1 

 

Taking inverse Laplace transformation, we get 

 𝑢1 2 =
𝑈1

2𝜋
𝐻(𝑡 − 𝑇1)  𝜙1 𝑦1 ,  𝑦2 ,  𝑦3  

 

We also have,    𝜏 11 2 =
𝑝

1

𝜂
+

𝑝

𝜇

𝜕 𝑢 1 2

𝜕𝑦1
 

After taking inverse Laplace transformation, we get 

 

 𝜏11 2 =
𝜇𝑈1

2𝜋
𝐻 𝑡 − 𝑇1 𝑒

−
𝜇  𝑡−𝑇1 

𝜂 𝜓1 𝑦1 ,  𝑦2 ,  𝑦3  

Similarly, 𝜏12 2 =
𝜇𝑈1

4𝜋
𝐻 𝑡 − 𝑇1 𝑒

−
𝜇  𝑡−𝑇1 

𝜂 𝜓2 𝑦1 ,  𝑦2 ,  𝑦3  

 𝜏13 2 =
𝜇𝑈1

4𝜋
𝐻 𝑡 − 𝑇1 𝑒

−
𝜇  𝑡−𝑇1 

𝜂 𝜓3 𝑦1 ,  𝑦2 ,  𝑦3  

 𝜏22 2 = 0 

 𝜏23 2 = 0 

 𝜏33 2 = 0 

 𝑒11 2 =
𝑈1

2𝜋
𝐻(𝑡 − 𝑇1) 𝜓1 𝑦1 ,  𝑦2 ,  𝑦3  

 𝑒12 2 =
𝑈1

4𝜋
𝐻(𝑡 − 𝑇1) 𝜓2 𝑦1 ,  𝑦2 ,  𝑦3 (14) 

where𝜙1 𝑦1 ,  𝑦2 ,  𝑦3 =

  𝑓1 𝑥1 ,  𝑥3 .  
 𝑦2−𝑥2 

  𝑦1−𝑥1 2+ 𝑦2−𝑥2 2+ 𝑦3−𝑥3 2 
3
2

+
 𝑦2−𝑥2 

  𝑦1−𝑥1 2+ 𝑦2−𝑥2 2+ 𝑦3+𝑥3 2 
3
2

 𝑑𝑥3𝑑𝑥1
𝐷1

0

𝐿1

−𝐿1
 

 

𝜓1 𝑦1 ,  𝑦2 ,  𝑦3 =   3𝑓1 𝑥1 ,  𝑥3 .  −
 𝑦2 − 𝑥2  𝑦1 − 𝑥1 

  𝑦1 − 𝑥1 
2 +  𝑦2 − 𝑥2 

2 +  𝑦3 − 𝑥3 
2 

5

2

𝐷1

0

𝐿1

−𝐿1

−
 𝑦2 − 𝑥2  𝑦1 − 𝑥1 

  𝑦1 − 𝑥1 
2 +  𝑦2 − 𝑥2 

2 +  𝑦3 + 𝑥3 
2 

5

2

 𝑑𝑥3𝑑𝑥1 

 

𝜓2 𝑦1 ,  𝑦2 ,  𝑦3 =   𝑓1 𝑥1 ,  𝑥3 .  
 𝑦1−𝑥1 2−2 𝑦2−𝑥2 2+ 𝑦3−𝑥3 2

  𝑦1−𝑥1 2+ 𝑦2−𝑥2 2+ 𝑦3−𝑥3 2 
5
2

−
 𝑦1−𝑥1 2−2 𝑦2−𝑥2 2+ 𝑦3+𝑥3 2

  𝑦1−𝑥1 2+ 𝑦2−𝑥2 2+ 𝑦3+𝑥3 2 
5
2

 𝑑𝑥3𝑑𝑥1
𝐷1

0

𝐿1

−𝐿1
  

 

𝜓3 𝑦1 ,  𝑦2 ,  𝑦3 =   3𝑓1 𝑥1 ,  𝑥3 .  −
 𝑦2 − 𝑥2  𝑦3 − 𝑥3 

  𝑦1 − 𝑥1 
2 +  𝑦2 − 𝑥2 

2 +  𝑦3 − 𝑥3 
2 

5

2

𝐷1

0

𝐿1

−𝐿1

−
 𝑦2 − 𝑥2  𝑦3 + 𝑥3 

  𝑦1 − 𝑥1 
2 +  𝑦2 − 𝑥2 

2 +  𝑦3 + 𝑥3 
2 

5

2

 𝑑𝑥3𝑑𝑥1 

(15) 

From the solution we find that the stress further accumulates due to the tectonic activities and stresses 

either accumulates or releases due to the movement across the fault F1. We assume that the second fault F2 slips 

after a time T2 when the accumulated relevant stress near it exceeds the critical value 𝜏𝑐2
(say). 

The slip condition is characterize by: 

 (𝑢1) 𝐹2
= 𝑈2 . 𝑓2 𝑧1 ,  𝑧3 .  𝐻(𝑡2)            (16) 

where (𝑢1) 𝐹2
= the discontinuity of u1 across F2 = lim𝑧2→0+ 𝑢1 − lim𝑧2→0− 𝑢1  
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 −𝐿2 ≤ 𝑧1 ≤ 𝐿2,  𝑧2 = 0,  0 ≤ 𝑧3 ≤ 𝐷2 ,  𝑡2 = 𝑡 − 𝑇2 ,  𝑡2 ≥ 0 

and 𝐻(𝑡2) is the Heaviside step function. 

 For a strike-slip movement across the fault F2 the solutions for displacements, stresses and strains 

obtained in a similar way as: 

𝑢1
′ =

𝑈2

2𝜋
𝐻 𝑡 − 𝑇2 𝜙1

′  𝑧1 ,  𝑧2 ,  𝑧3  

𝑢2
′ = 0 

𝑢3
′ = 0 

𝑇11 =
𝜇𝑈2

2𝜋
𝐻 𝑡 − 𝑇2 𝑒

−
𝜇  𝑡−𝑇2 

𝜂 𝜓1
′  𝑧1,  𝑧2,  𝑧3  

𝑇12 =
𝜇𝑈2

4𝜋
𝐻 𝑡 − 𝑇2 𝑒

−
𝜇  𝑡−𝑇2 

𝜂 𝜓2
′  𝑧1,  𝑧2 ,  𝑧3  

𝑇13 =
𝜇𝑈2

4𝜋
𝐻 𝑡 − 𝑇2 𝑒

−
𝜇  𝑡−𝑇2 

𝜂 𝜓3
′  𝑧1,  𝑧2 ,  𝑧3  

𝑇22 = 0 

𝑇23 = 0 

𝑇33 = 0 

𝐸11 =
𝑈2

2𝜋
𝐻(𝑡 − 𝑇2) 𝜓1

′  𝑧1 ,  𝑧2,  𝑧3  

𝐸12 =
𝑈2

4𝜋
𝐻(𝑡 − 𝑇2) 𝜓2

′  𝑧1,  𝑧2,  𝑧3 (17) 

 

where 𝜙1
′ , 𝜓1

′ , 𝜓2
′ , 𝜓3

′  have similar expressions as those of 𝜙1, 𝜓1 , 𝜓2 , 𝜓3 respectively as given in (15) and can be 

obtained from them on replacing 𝑓1 𝑦1 ,  𝑦3 , 𝐿1 , 𝐷1 , 𝑦1 , 𝑦2 , 𝑦3 by 𝑓2 𝑧1,  𝑧3 , 𝐿2 , 𝐷2 , 𝑧1, 𝑧2  and 𝑧3 respectively. 

 

In terms of  𝑦1 ,  𝑦2 ,  𝑦3  the final solution after the movement across the fault F2 can be obtained as 

follows: 

𝑢1 = (𝑢1)1 + (𝑢1)2 + (𝑢1)3 

𝑢2 =  𝑢2 1 +  𝑢2 2 +  𝑢2 3 

𝑢3 = (𝑢3)1 + (𝑢3)2 + (𝑢3)3 

𝜏11 = (𝜏11)1 + (𝜏11)2 + (𝜏11)3 

𝜏12 = (𝜏12)1 + (𝜏12)2 + (𝜏12)3 

𝜏13 = (𝜏13)1 + (𝜏13)2 + (𝜏13)3 

𝜏22 = (𝜏22)1 + (𝜏22)2 + (𝜏22)3 

𝜏23 = (𝜏23)1 + (𝜏23)2 + (𝜏23)3 

𝜏33 = (𝜏33)1 + (𝜏33)2 + (𝜏33)3 

𝑒11 = (𝑒11)1 + (𝑒11)2 + (𝑒11)3 

𝑒12 = (𝑒12)1 + (𝑒12)2 + (𝑒12)3(18) 

 

where(𝑢𝑖)1, (𝜏𝑖𝑗 )1, (𝑒𝑖𝑗 )1 are given by (8), (𝑢𝑖)2, (𝜏𝑖𝑗 )2, (𝑒𝑖𝑗 )2 are given by (14), (𝑢𝑖)3 , (𝜏𝑖𝑗 )3 , (𝑒𝑖𝑗 )3 and 

𝑢𝑖
′ , 𝑇𝑖𝑗 , 𝐸𝑖𝑗  given in (17) are connected by the relations :  i,  j = 1,  2,  3  

 

(𝑢1)3 = 𝑢1
′  𝑐𝑜𝑠𝜃 − 𝑢2

′  𝑠𝑖𝑛𝜃 

(𝑢2)3 = 𝑢1
′  𝑠𝑖𝑛𝜃 + 𝑢2

′  𝑐𝑜𝑠𝜃 

(𝑢3)3 = 0 

(𝜏11 )3 = 𝑇11𝑐𝑜𝑠
2𝜃 − 𝑇12  𝑠𝑖𝑛2𝜃 + 𝑇22𝑠𝑖𝑛

2𝜃 

(𝜏12)3 =
𝑇11

2
 𝑠𝑖𝑛2𝜃 + 𝑇12  𝑐𝑜𝑠2𝜃 −

𝑇22

2
 𝑠𝑖𝑛2𝜃 

(𝜏13)3 = 𝑇13  𝑐𝑜𝑠𝜃 − 𝑇23  𝑠𝑖𝑛𝜃 

(𝜏22)3 = 𝑇11𝑠𝑖𝑛
2𝜃 + 𝑇12  𝑠𝑖𝑛2𝜃 + 𝑇22𝑐𝑜𝑠

2𝜃 

(𝜏23)3 = 𝑇13  𝑠𝑖𝑛𝜃 + 𝑇23  𝑐𝑜𝑠𝜃 

(𝜏33)3 = 𝑇33  

(𝑒11)3 = 𝐸11  𝑐𝑜𝑠𝜃 − 𝐸12  𝑠𝑖𝑛𝜃 

(𝑒12)3 = 𝐸11  𝑠𝑖𝑛𝜃 + 𝐸12  𝑐𝑜𝑠𝜃 

 

V. Numerical computations  
Following Cathles

25
, Aki and Rechards

26
 and the recent studies on rheological behavior of crust and 

upper mantle by Clift.et. al.
27

 the values to the model parameters are taken as: 
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𝜇 = 3 × 1011  𝑑𝑦𝑛 𝑐𝑚−2  

𝜂 = 6.35 × 1020  𝑝𝑜𝑖𝑠𝑒 

𝐷1 = Depth of the fault F1 = 10 km.  

𝐷2 = Depth of the fault F2 = 15 km. [Noting that the depth of all major earthquake faults are in between 10 – 15 

km. ] 

𝐷 = 15 km.  

𝑑 = 15 km.  

2𝐿1 = Length of the fault F1 = 40 km.  

2𝐿2 = Length of the fault F2 = 60 km.  

We take 𝜏∞ 𝑡 = 𝜏∞ = 300 bars [assumed to be constant in our numerical computations. Post seismic 

observations reveal that stresses released in major earthquakes are of the order of 200 bars, in extreme cases it 

may be 400 bars] 

(𝜏12)0 = 20 bars 

We take slip functions as : 

𝑓1 𝑦1 ,  𝑦3 =  1 −
𝑦1

2

𝐿1
2  1 −

3𝑦3
2

𝐷1
2 +

3𝑦3
3

𝐷1
3   

𝐷1 − 𝑦3

𝐷1

  

𝑓2 𝑧1 ,  𝑧3 =  1 −
𝑧1

2

𝐿2
2  1 −

3𝑧3
2

𝐷2
2 +

3𝑧3
3

𝐷2
3   

𝐷2 − 𝑧3

𝐷2

  

𝑈1 = 100 𝑐𝑚 

𝑈2 = 50 𝑐𝑚 

𝜃 is assumed to be 
𝜋

6
 

We compute the following quantities: 

 

𝑢1 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 −  𝑢1 0 =
𝜏𝐿1

𝜇
𝑦1𝑡 +

𝑦2

𝜇
 𝜏∞ 𝑡 − 𝜏∞ 0 +

𝜇

𝜂
 𝜏∞ 𝜏  𝑑𝜏

𝑡

0

 +
𝑈1

2𝜋
𝐻(𝑡 − 𝑇1)  𝜙1 𝑦1 ,  𝑦2 ,  𝑦3  

𝑢2 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 −  𝑢2 0 =
𝑦1 + 𝑦2

𝜇
 𝜏∞ 𝑡 − 𝜏∞ 0 +

𝜇

𝜂
 𝜏∞ 𝜏  𝑑𝜏

𝑡

0

  

𝑒12 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 −
1

2
 𝑒12 0 =

1

𝜇
 𝜏∞ 𝑡 − 𝜏∞ 0 +

𝜇

𝜂
 𝜏∞ 𝜏  𝑑𝜏

𝑡

0

 +
𝑈1

4𝜋
𝐻(𝑡 − 𝑇1) 𝜓2 𝑦1 ,  𝑦2 ,  𝑦3  

𝜏11 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = (𝜏11 )0𝑒
−

𝜇𝑡

𝜂 +
𝜇

𝜂
𝜏𝐿1

 1 − 𝑒
−

𝜇𝑡

𝜂  +
𝜇𝑈1

2𝜋
𝐻 𝑡 − 𝑇1 𝑒

−
𝜇  𝑡−𝑇1 

𝜂 𝜓1 𝑦1 ,  𝑦2 ,  𝑦3  

𝜏12 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = 𝜏∞ 𝑡 −  𝜏∞ 0 −  𝜏12 0 𝑒
−

𝜇𝑡

𝜂 +
𝜇𝑈1

4𝜋
𝐻 𝑡 − 𝑇1 𝑒

−
𝜇  𝑡−𝑇1 

𝜂 𝜓2 𝑦1 ,  𝑦2 ,  𝑦3  

𝜏13 𝑦1 ,  𝑦2 ,  𝑦3 ,  𝑡 = (𝜏13 )0𝑒
−

𝜇𝑡

𝜂 +
𝜇𝑈1

4𝜋
𝐻 𝑡 − 𝑇1 𝑒

−
𝜇  𝑡−𝑇1 

𝜂 𝜓3 𝑦1 ,  𝑦2 ,  𝑦3  

 

 

VI. Results and discussion 
Surface shear strain due to fault movement on the free surface: 

The shear strain 𝑒12  at distances from the strike of the fault 𝑦1 = 5 km. on the free surface is compared 

in three phases  

(i) before any fault movement 

(ii) after the movement across the fault F1 

(iii) after the movement across the fault F2 which are shown in Figure 2. 
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Figure 2:Variation of shear strain 𝑒12  on the free surface at𝑦1 = 5 km. with 𝑦2 due to fault movements. 

 

The magnitude of the surface shear strain due to the fault movement is found to be of order of (1 −
2) × 10−6 per year, which is conformity with the observed rate of shear strain accumulation during the aseismic 

period in seismically active regions. This established the validity of our model. 

 

 

 

Displacement vectors on the free surface 𝒚𝟑 = 𝟎 due to fault movement across F1 and F2 : 

 
Figure 3:Displacement vector on the free surface after both the faults F1and F2 slips. 

 

Figure 3 shows the displacement vectors on the free surface 𝑦3 = 0 for 𝑦1 = - 40 km. to 40 km. and 

𝑦2 = - 40 km. to 40 km. due to the fault movement across F1 and F2. 
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Accumulation of stress  𝝉𝟏𝟐 and 𝑻𝟏𝟐 against time: 

 
Figure 4:The accumulation of stress  𝜏12  and 𝑇12  against time. 

 

Figure 4 shows the accumulation of stress in three phases : 

Phase I :  𝜏12  near F1 for 0 < 𝑡 ≤ 𝑇1, 

Phase II :  𝑇12  near F2 for 𝑇1 < 𝑡 ≤ 𝑇2, 

Phase III :  𝑇12   near F2 for 𝑡 ≥ 𝑇2. 

In each cases the stresses are found to be increasing but at a decreasing rate. Further the rate of increase 

of 𝑇12  is found to be less than that of 𝜏12  on the avarage. During Phase III the rate of increase of accumulated 

stress is less than that of 𝑇12  during the second phase. In all the cases it has been assumed that the accumulated 

stresses have been released completely during the movement across F1 and F2 with the initial stress (𝜏12 )0 = 20 

bars and (𝑇12 )0 = 20 bars at F1 and F2 respectively. It has been found that due to the movement across F1 the 

magnitude of the stress changes slightly at 𝑡 = 𝑇1 (56 years). It starts accumulating and reaches a value 𝜏𝑐2
 (220 

bars) at time 𝑡 = 𝑇2 (177 years). The movement across F2 leads to a release in the accumulated stress and its 

magnitude undergo some changes from the initial stress (𝑇12 )0 at 𝑡 = 𝑇2. It again starts accumulating and get 

passed 𝜏𝑐2
 at time 𝑡 = 309 years, i.e. after a gap of about 132 years. The movement across F2 has been enhanced 

by a considerable amount of time due to the joint effect of movements across F1 and F2. 

Stress accumulation and release region due to fault movement across F1 and F2:  

 
Figure 5:Region indication for stress accumulation and  release due to the movement across both  the faults  

F1 and F2. 

 



Interactions Among Finite Rectangular Faults in a Viscoelastic Half-Space 

DOI: 10.9790/0990-0705023342                               www.iosrjournals.org                                               42 | Page 

Figure 5 shows the stress accumulation and release region due to the slipping movements across both the faults 

F1 and F2 for 𝑡2 = 1 year over the region 𝑦1 = 0.5 km.,  𝑦2 = - 40 km. to 40 km. and 𝑦3 = 0 km. to 40 km. 

 

VII. Conclusion 

i) In the above results we find that the strain on the free surface due to the movements of the faults is of the 

order of 10−6 per year. 

ii)  Displacement vectors on the two sides of the fault plane (on the free surface) are in opposite directions. 

iii)  We also found that the movements across one fault causes stress accumulation / release near the other fault 

which essentially depends on the dimensions of the faults as well as the distance between the faults. 

iv) The shear and normal stress due to the fault movement sometimes get accumulated in certain region while 

there are some regions where the stress is found to get released due to the fault movement. 

v) This approach may help us to understand the earthquake generating process to identify possible earthquake 

prediction. 
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